کرانهایی برای عدد k-احاطه ای یک گراف

thesis
  • وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده ریاضی
  • author علی خدادادی
  • adviser رعنا خوییلر
  • publication year 1394
abstract

در این پایانامه کرانهای بالا و پایین برای عدد k-احاطه ای ارایه میکنیم.

similar resources

عدد احاطه ای فرعی در یک گراف

فرض کنید یک گراف همبند باشد. برای رئوس متمایز و ، فاصله فرعی ، طول بلندترین مسیر بین و در است. یک مسیر به طول را یک مسیر فرعی می نامند. مجموعه از رئوس را یک مجموعه فرعی می نامند هرگاه هر رأس از در یک مسیر فرعی برای برخی اعضای مانند و قرار گیرد. مینیمم اندازه یک مجموعه فرعی را عدد فرعی نامیده و با نماد نشان می دهند. مجموعه فرعی که هیچ زیرمجموعه سره آن یک مجموعه فرعی نباشد را مجموعه فرعی مینیمال ...

15 صفحه اول

عدد احاطه ای همبند مضاعف در گراف

فرض g گرافی با مجموعه رئوس v و مجموعه یال های e باشد، زیر مجموعه d از رئوس g یک مجموعه احاطه گر همبند مضاعف برای g است، هرگاه d یک مجموعه احاطه گر بوده و زیر گراف های القایی g[d] و g[v-d] همبند باشند.می نیمم اندازه یک مجموعه احاطه گر همبند مضاعف را عدد احاطه ای همبند مضاعف می نامیم.

15 صفحه اول

نتایجی برای عدد احاطه گر ماکسیمال ۲-رنگین کمانی در گراف ها

تابع  یک تابع احاطه گر 2-رنگین کمانی  برای گراف  نامیده می­شود هرگاه برای هر راس  با شرط  داشته باشیم . وزن یک 2rdf  برابر است با . عدد احاطه گر 2-رنگین کمانی گراف  را که با نماد  نمایش می­دهیم کمترین وزن یک 2rdf در گراف  است. تابع احاطه­گر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف  یک تابع احاطه­گر 2-رنگین کمانی  می­باشد به­طوری که مجموعه­ی  یک مجموعه­ی احاطه­گر برای گراف  نباشد. وزن یک m2rdf  ...

full text

عدد احاطه ای همبند بیرونی در گراف

در این پایان نامه ضمن بررسی مجموعه های احاطه گرهمبندبیرونی،برای عدداحاطه ای همبندبیرونی چندکران ارائه می کنیم. همچنین گراف هایی باعدد احاطه ای همبندبیرونی بزرگ را دسته بندی کرده و نامساوی از نوع nordhaus-gaddumرا برای عدد احاطه ای همبند بیرونی ثابت می کنیم. بعلاوه، رابطه بین عدد احاطه ای همبندبیرونی را باپارامترهای دیگر یک گراف بررسی خواهیم کرد.

15 صفحه اول

عدد احاطه ای مستقل در گراف ها

فرض کنید (g=(v,e گرافی با مجموعه رئوس v و مجموعه یال های e باشد. مجموعه d از رئوس گراف g، یک مجموعه احاطه گر است، هرگاه هر عضو v-d با رأسی از d، مجاور باشد. می نیمم اندازه یک مجموعه احاطه گر را عدد احاطه ای g گویند و با نماد (γ(g نشان می دهند. مجموعه d از رئوس گراف g، یک مجموعه مستقل است، هرگاه هیچ دو رأسی از d، در g مجاور نباشد. ماکسیمم اندازه یک مجموعه مستقل را عدد استقلال g گویند و با نماد ...

15 صفحه اول

عدد احاطه گر جفت شده k-فاصله ای گراف های ساده

عدد احاطه گر یکی از پارامترهای مهم در نظریه گراف است. زیر مجموعه ای d از مجموعه رئوس گراف (g=(v,e را یک مجموعه احاطه گر برای گراف گویند هرگاه هر رأس خارج d حداقل یک همسایه داخل آن داشته باشد. مقدار کمینه اندازه چنین مجموعه هایی عدد احاطه گر نامیده میشود. در بررسی این پارامتر یافتن کران های بالا و پایین اهمیت و کاربرد دارد. انواع عدد احاطه گر با قرار دادن شرایطی روی d تعریف میشود. در این پایان ن...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023